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In the one-dimensional periodic potential case, we formulate the condition of Bloch
periodicity for the reduced action by using the relation between the wave function and
the reduced action established in the context of the equivalence postulate of quantum
mechanics. Then, without appealing to the wave function properties, we reproduce
the well-known dispersion relations which predict the band structure for the energy
spectrum in the Krönig-Penney model.
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1. INTRODUCTION

By establishing that quantum mechanics can be reproduced from an equiv-
alence postulate (Faraggi and Matone, 1999, 1998b, 2000), Faraggi and Matone
have rekindled the hope that general relativity can be reconciled with quantum
mechanics. Assuming that all quantum systems can be connected by a coordinate
transformation, they derived the one-dimensional quantum stationary Hamilton-
Jacobi equation
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amohamed meziane@yahoo.fr.

2377
0020-7748/06/1200-2377/0 C© 2006 Springer Science+Business Media, Inc.



2378 Bouda and Meziane

in which V (x) is an external potential and E the energy. They established then
that the Schrödinger wave function is related to the reduced action, S0, by

φ(x) = R(x)

[
α exp

(
i

h
S0(x)

)
+ β exp

(
− i

h
S0(x)

)]
, (2)

as shown also in Bouda (2001) by using the probability current. In Eq. (2), α

and β are complex constants, S0(x) and R(x) are real functions and R(x) is
proportional to (∂S0/∂x)−1/2. In contrast to Bohm’s theory (Bohm, 1952a,b),
relation (2) guarantees that S0 is never constant even in the case where the wave
function is real, up to a constant phase factor. We note that the Bohm ansatz is
obtained from (2) by using the particular values α = 1 and β = 0.

Furthermore, without appealing to the usual axiomatic interpretation of the
wave function, Faraggi and Matone (2000, 1998a) showed that tunnel effect and
energy quantization are consequences of the equivalence postulate. In the same
spirit, we propose in this paper to examine the case of a system in a periodic
potential. In Section 2, we establish the condition of Bloch periodicity (Bloch,
1928) for the reduced action. In Section 3, we investigate the Krönig-Penney model
(Krönig and Penney, 1931) without appealing to the Schrödinger wave function
or to its usual axiomatic interpretation. Section 4 is devoted to conclusion.

2. THE BLOCH THEOREM

The understanding of the behavior of electrons in crystal lattices has been
advanced through the work of Bloch (Bloch, 1928). The main idea is that the
interaction of an electron with the other particles of the lattice may be replaced by
a periodic potential.

In the present work, we consider the one-dimensional case with a potential
satisfying the following periodicity condition

V (x + e) = V (x), ∀ x , (3)

where e is a period. With this relation, Bloch (1928) showed that any solution φ

of the Schrödinger equation,

− h2

2m

d2φ

dx2
+ V (x)φ = Eφ , (4)

satisfies the property

φ(x + e) = exp (iKe) φ(x) , (5)

where K is a constant. This property represents the condition of Bloch periodicity
for the wave function. It is known as a Bloch theorem and was also established by
Floquet (1883).
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Our task now consists in finding a corresponding version when we deal with
the reduced action which is related to the wave function by (2). For this purpose,
let us set

α = |α| exp (ia), β = |β| exp (ib), (6)

a and b being real parameters. By substituting expressions (6) in (2), we can
deduce that

exp (iKe) φ(x) = exp
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Writing an analogous relation for φ(x + e) as in (2) and using (6), we obtain

φ(x + e) = exp
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Substituting (7) and (8) in (5) and separating in the obtained relation the real part
from the imaginary one, we get to the two following relations
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and
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Dividing side by side relations (10) and (9), we obtain

� tan

[
S0 (x + e)

h
+ �

]
= � tan [S0 (x) /h + �] + tan Ke

1 − � tan [S0 (x) /h + �] tan Ke
(11)

where

� = a − b

2
, � = |α| − |β|

|α| + |β| . (12)

Knowing that tan (arctan u) = u ∀ u ∈ �, with the use of

u = � tan

[
S0(x)
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]
,

relation (11) turns out to be
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+ Ke + nπ (13)

where n is an integer number. This relation is the condition of Bloch periodicity
for the reduced action and represents the Bloch theorem version in this context.
Taking into account the relation tan α = −i[exp(2iα) − 1][exp(2iα) + 1]−1, it is
easy to show from (11) that the periodicity condition (13) can be written in the
following form

exp[2iS0(x + e)/h] = P exp[2iS0(x)/h] + Q

M exp[2iS0(x)/h] + N
, (14)

where

P = −(1 − �)2 + (1 + �)2 exp(2iKe) , (15)

Q = (1 − �2)[exp(2iKe) − 1] exp(−2i�) , (16)

M = −(1 − �2)[exp(2iKe) − 1] exp(2i�) , (17)

N = (1 + �)2 − (1 − �)2 exp(2iKe) . (18)
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Relation (14) indicates that exp[2iS0(x + e)/h] is the Möbius transformation
of exp[2iS0(x)/h]. The Möbius group has allowed to fix from the equiva-
lence postulate the quantum version of the Hamilton-Jacobi equation (Faraggi
and Matone, 2000). The trace of the Möbius transformation (14) is P + N =
4�[1 + exp(2iKe)]. Except for the particular values of K with which sin Ke

vanishes, this trace is complex and hence the transformation (14) can not be
classified as hyperbolic, parabolic or elliptic (Doubrovine et al., 1982). In the
case of Bohm’s theory, we have the particular values α = 1 and β = 0 which
imply that � = 1 and � = 0. It follows that both relations (13) and (14)
reduce to

S0 (x + e) = S0 (x) + hKe + n′πh , (19)

where n′ is also an integer number. It is interesting to observe that if we define the
function

F (x) ≡ 1

πh
[So(x) − hKx] , (20)

we can show from (19) the following affine transformation

F (x + e) = F (x) + n′ . (21)

3. THE KRÖNIG-PENNEY MODEL

Another important step in the description of the behavior of electrons in
crystal lattices was the work of Krönig and Penney (1931). In one dimension,
their model, which has the advantage in that it predicts correctly the spectrum of
permissible energy values, consists in considering the potential in the form of a
series of equidistant rectangular barriers

V (x) =
{

0, n(c + d) < x < n(c + d) + c

V0, n(c + d) + c < x < (n + 1)(c + d)
,

where n is an integer number. The period is e = c + d.
Let us begin by the case where E > V0 and set

k1 =
√

2m(E − V0)

h
, k2 =

√
2mE

h
. (22)

In Refs. (Ngô and Ngô, 1995; Singh, 1996), by using the continuity of the wave
function and its derivative, it is shown that

cos Ke = cos (k1d) cos (k2c) − k2
1 + k2

2

2k1k2
sin (k1d) sin (k2c) (23)
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An investigation of this dispersion relation shows the existence of a band structure
for the energy spectrum.

Our goal now is to reproduce relation (23) by using the properties of the
reduced action.

Let us call I , II and III the three regions −d < x < 0, 0 < x < c and
c < x < c + d respectively and impose the continuity at x = 0 for the reduced
action and its first and second derivative
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Since c = e − d, by assuming at x = −d the following continuity condition:

SIII
0 (x + e)

∣∣
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= SII
0 (x + e)

∣∣
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,

and by applying at x = −d the condition of Bloch periodicity, Eq. (13), for the
reduced action, we deduce that
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As at x = 0, by assuming also the continuity at x = −d of the first and the second
derivative of S0(x + e),
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we can take the first and the second derivative of the two sides of relation (27)

∂
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∂2

∂x2
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[
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The solution for the one-dimensional quantum stationary Hamilton-Jacobi equa-
tion, Eq. (1), is well-known (Faraggi and Matone, 1999, 2000; Bouda, 2001; Floyd,
1986, 1996, 2000) and is written in (Bouda and Djama, 2001) as

S0 = h arctan

[
µ

φ1

φ2
+ ν

]
+ hl, (30)

where (φ1, φ2) is a couple of two real independent solutions of the Schrödinger
equation, Eq. (4), and (µ, ν, l) are real integration constants satisfying the condi-
tion µ �= 0. Let us choose for Eq. (4) the couples of independent solutions

(sin k1x, cos k1x), (sin k2x, cos k2x) (31)

respectively in regions I and II . With the use of (30), we have

SI
0 (x) = h arctan [µ1 tan(k1x) + ν1] + hl1, (32)

and

SII
0 (x) = h arctan [µ2 tan(k2x) + ν2] + hl2. (33)

As the reduced action is defined up to an additive constant, we can fix one constant
among (l1, l2) and determine the other from the boundary conditions. Thus, let us
choose

l1 = −�, (34)

where � is defined in (12), and apply relations (24), (25) and (26)

h arctan (ν1) − h� = h arctan (ν2) + hl2, (35)

h
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1
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2
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1
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2µ2
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2
2(
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2

)2 . (37)

From the system (35), (36) and (37), it is easy to show that

ν1 = ν2 , (38)

l1 = l2 = −� , (39)
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µ1 = k2

k1
µ2, (40)

and relations (32) and (33) become

SI
0 (x) = h arctan [µ1 tan(k1x) + ν1] − h�, (41)

and

SII
0 (x) = h arctan

[
k1

k2
µ1 tan(k2x) + ν1

]
− h�. (42)

As c = e − d, if we set

A = −µ1 tan (k1d) + ν1 (43)

B = k1

k2
µ1 tan (k2c) + ν1 (44)

relation (27) gives

arctan {� tan [arctan B]} = arctan {� tan [arctan A]} + Ke + nπ (45)

which leads to

�B = �A + tan Ke

1 − �A tan Ke
. (46)

This relation can be rewritten in the following form

cos2 Ke = (1 + �2AB)2

(1 + �2A2)(1 + �2B2)
. (47)

With the use of (41), (42), (43) and (44), by applying successively (28) and (29),
we find

(1 + �2B2) cos2 k2c = (1 + �2A2) cos2 k1d (48)

and
k2 tan k2c

(1 + �2B2) cos2 k2c
+ k1 tan k1d

(1 + �2A2) cos2 k1d

= µ1k1�
2B

(1 + �2B2)2 cos4 k2c
− µ1k1�

2A

(1 + �2A2)2 cos4 k1d
. (49)

Taking into account relations (48), (47) and (49) give respectively

cos2 Ke =
(

1 + �2AB

1 + �2A2

)2
cos2 k2c

cos2 k1d
(50)

and

�2(B − A) = 1 + �2A2

µ1k1
(k2 tan k2c + k1 tan k1d) cos2 k1d . (51)
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From (43) and (44), we write

B − A = µ1

k2
(k1 tan k2c + k2 tan k1d) . (52)

Multiplying side by side relations (51) and (52) and using the identity

�2(B − A)2 = (1 + �2B2) + (1 + �2A2) − 2(1 + �2AB) , (53)

we find

2(1 + �2AB) = (1 + �2A2)

[
1 + 1 + �2B2

1 + �2A2
− W cos2 k1d

k1k2

]
, (54)

where

W = (k1 tan k1d + k2 tan k2c)(k1 tan k2c + k2 tan k1d) . (55)

Using (48), (54) turns out to be

1 + �2AB

1 + �2A2
= 1

2

[
1 + cos2 k1d

cos2 k2c
− W cos2 k1d

k1k2

]
, (56)

Substituting this result in (50), we find

cos Ke = 1

2

[
1 + cos2 k1d

cos2 k2c
− W cos2 k1d

k1k2

]
cos k2c

cos k1d
(57)

Using expression (55) of W , this last relation leads straightforwardly to (23).
Let us now consider the case where E < V0 and set

k3 =
√

2m(V0 − E)

h
. (58)

In Refs. (Ngô and Ngô, 1995; Singh, 1996), by using the continuity of the wave
function and its derivative, it is shown that

cos Ke = cosh (k3d) cos (k2c) − k2
2 − k2

3

2k2k3
sinh (k3d) sin (k2c) (59)

This relation was obtained for the first time by (Krönig and Penney, 1931). As it is
the case for (23), an investigation of (59) shows the existence of a band structure
for the energy spectrum. In order to reproduce it with the use of the the reduced
action properties, let us choose as independent real solutions of the Schrödinger
equation, Eq. (4), the two couples

(sinh k3x, cosh k3x), (sin k2x, cos k2x) (60)

respectively in regions I and II . With the use of (30), we have

SI
0 (x) = h arctan [µ3 tanh(k3x) + ν3] + hl3, (61)
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and SII
0 (x) keeps the same expression as in (33). By appealing to the continuity

conditions (24), (25) and (26) at x = 0 for the reduced action and its derivatives,
and to Bloch periodicity condition with its derivatives, Eqs. (27), (28) and (29),
and by following the same procedure as above, we get to relation (59) without
using the wave function.

We would like to emphasize that, in order to reproduce the dispersion relations
(23) and (59), the choice of the couples (31) and (60) of solutions of the Schrödinger
equation used in the reduced action is not an essential. Since the Schrödinger
equation is linear, other choices which must be linear combinations of the above
solutions are also possible. However, any other choice must reproduce the same
dispersion relations. In fact, as shown in Ref. (Bouda and Djama, 2002), we
can check that the reduced action is invariant under any linear transformation of
the solutions of the Schrödinger equation by redefining suitably the integration
constants (µ, ν, l).

4. CONCLUSION

The present work can be summarized in two main results.

1. In a periodic potential case, we established the condition of Bloch pe-
riodicity for the reduced action by using the relation between the wave
function and the reduced action established in the context of the equiv-
alence postulate of quantum mechanics. The analogous version of this
theorem in Bohm’s theory is also deduced.

2. In this context, by using the quantum Hamilton-Jacobi equation, we also
reproduced the well-known dispersion relations which predict a band
structure for the energy spectrum without appealing to the wave function
or to its usual axiomatic interpretation. These relations can be also repro-
duced in the context of the Bohm theory which appears here as a particular
case in which we take (α = 1, β = 0) and then (� = 1,� = 0).

To conclude, we think that the present work is a further argument to reinforce
the belief that the equivalence postulate of quantum mechanics constitutes a serious
alternative to the standard quantum mechanics. In fact, firstly it allows to reproduce
the well-known results as it was already the case both for the tunnel effect and
energy quantization (Faraggi and Matone, 2000, 1998a). Secondly, it provides an
appropriate frame to reconcile general relativity with quantum mechanic.
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